
lowball
Release 1.0

unknown

Oct 02, 2021

CONTENTS:

1 Installing lowball 3
1.1 Pip . 3
1.2 From Source . 3

2 Quickstart 5
2.1 Before You Begin . 5
2.2 Basic lowball App . 5

3 Route RBAC Enforcement 7
3.1 Require Authenticated User . 7
3.2 Require Any of These Roles . 7
3.3 Require All of These Roles . 8
3.4 Require Admin . 8

4 Included Routes 9

5 Authentication Providers 19
5.1 Available Authentication Providers . 19
5.2 Implementing Your Own Authentication Provider . 20

6 Authentication Databases 25
6.1 Available Authentication Databases . 25
6.2 Implementing Your Own Authentication Database . 26

7 Configs 29
7.1 Meta Config . 29
7.2 Authentication Config . 30
7.3 Application Config . 30
7.4 Authentication Provider Config . 31
7.5 Auth Database Config . 31
7.6 Logging Config . 31
7.7 Reading in Configs . 31

8 Logging 35
8.1 Default Logging Handler . 35

HTTP Routing Table 39

i

ii

lowball, Release 1.0

What is it? Lowball is designed to add simple endpoint level RBAC to your Flask based API services.

What does it do? Lowball is, at its core, a wrapper around Flask, designed to add authentication and permission
management features to Flask’s already powerful and modular implementation. Lowball was developed to support
three key needs:

1) Easy to use route level RBAC controls.

2) Abstracted authentication providers and databases for easier integration with your operating environment.

3) Ecosystem of 1 - n microservices leveraging a common authentication authority.

Lowball implements this with three components

1) Route RBAC Enforcement

2) Authentication Providers

3) Authentication Databases

Together, these components allow a developer to produce 1 - n microservices that are able to integrate with your existing
authentication infrastructure and utilize database technologies of your choice.

Continue reading to find out more!

CONTENTS: 1

https://github.com/pallets/flask

lowball, Release 1.0

2 CONTENTS:

CHAPTER

ONE

INSTALLING LOWBALL

lowball has been tested to work with only Python 3.6+

1.1 Pip

pip install lowball

1.2 From Source

git clone https://github.com/EmersonElectricCo/lowball
cd ./lowball
pip install -r requirements.txt
python setup.py install

3

lowball, Release 1.0

4 Chapter 1. Installing lowball

CHAPTER

TWO

QUICKSTART

This guide will lead you through the basics of launching a lowball service using the built in authentication provider
and authentication database.

The intent of this guide is to give you a quick introduction to the concepts lowball implements.

Note: The authentication database and provider used in this tutorial are the defaults for lowball. They are great for
use in a development environment. However, it is highly recommend to only use these for development and NOT in
a production environment. Once you are ready to deploy your application(s) we highly recommend changing out the
authentication components for other Available Authentication Providers and Available Authentication Databases.

2.1 Before You Begin

Be sure you have installed the lowball library through your method of choice. For more detail see Installing lowball

2.2 Basic lowball App

A minimal lowball service looks like this:

from lowball import Lowball, require_admin

app = Lowball()

@app.route("/hello", methods=["GET"])
@require_admin
def hello_world():

return {"hello":"world"}, 200

if __name__ == '__main__':
app.run()

That’s it, if we were to run this application with the below command, we would have a lowball application running using
the builtin default authentication provider and authentication database. These components enable to us limit access to
our hello world app to only users with the admin role assigned.

python3 app.py

5

lowball, Release 1.0

To to access our /hello endpoint we will need to have a token with the admin role associated with it. This can be
achieved by making a request to the lowball builtin /builtins/auth endpoint to get a token. Because we are using the
builtin authentication provider with the default config we do this via the following curl request:

curl -i -X POST -H "Content-Type: application/json" http://localhost:5000/builtins/auth -
→˓-data "{\"username\": \"admin\", \"password\": \"nimda\"}"

which will return a similar response to:

{
"token": "eyJ0e...jjk",
"token_data": {
"cid": "admin",
"r": [
"admin"

],
"cts": "2021-04-28 14:44:59",
"ets": "2021-04-28 15:44:59",
"rcid": "admin",
"tid": "SbH7opPxReMbyZZr"

}
}

Our successful call to the auth endpoint returned a few things. First and foremost is the token which is what we will
use in subsequent calls to other endpoints with RBAC controls associated with them.

In addition to the token itself, we we are given some additional meta data describing the token. This data is what
is stored in the authentication database. No actual authentication data is stored in the database including the tokens
themselves, passwords, secrets, etc.

cid Client ID associated with the token. This is the “user” according to the authentication provider.

r An array of roles issued to the token

cts Creation / issue time of the token

ets Expiration time of the token

rcid Requesting Client ID or the Client ID that requested the token. This will either be the same as the cid or an
administrator that issued the token on the clients behalf.

tid Unique token ID

Note: The default password for the builtin authentication provider is nimba. It is highly recommend to overwrite this
password. See Builtin Basic Authentication Provider for best practices.

Now that we have the token, we can now call our hello endpoint with the following curl command:

curl -i -H "Authorization: Bearer eyJ0e...jjk" http://localhost:5000/hello

{
"hello" : "world"

}

That’s it! You now have the basics for getting started with endpoint based RBAC controls and lowball. Read on to learn
details on the authentication providers, authentication databases, configs, and more. . .

6 Chapter 2. Quickstart

CHAPTER

THREE

ROUTE RBAC ENFORCEMENT

Lowball implements role-based access controls (RBAC) at the endpoint level via a handful of route decorators that
make it easy for you as a service developer to add RBAC enforcement at the endpoint level without disrupting the
structure of your project.

The enforcement decorators use the token’s declared roles to validate the authorization for the transaction.

The following sections describe the various RBAC decorators and their function.

3.1 Require Authenticated User

require_authenticated_user allows access to an endpoint for any user who provides a valid token regardless of the
token’s roles.

Example

from lowball import Lowball, require_authenticated_user
...
@app.route("/launch", methods=["GET"])
@require_authenticated_user
def view_upcoming_launches():

return {...}, 200

In the above example, any valid token will be able to access the endpoint.

3.2 Require Any of These Roles

require_any_of_these_roles allows any token with at least one of the roles in the provided list access to the given
endpoint.

Example

from lowball import Lowball, require_any_of_these_roles
...
@app.route("/launch/<id>", methods=["GET"])
@require_any_of_these_roles(['lead','manager','audit'])
def view_launch_details(id):

return {...}, 200

In the above example, any token that has at least a lead, manager or audit role granted to it will be allowed to access
the endpoint.

7

lowball, Release 1.0

3.3 Require All of These Roles

require_all_of_these_roles allows only a token possessing all of the specified roles to access the endpoint.

Example

from lowball import Lowball, require_all_of_these_roles
...
@app.route("/launch", methods=["POST"])
@require_all_of_these_roles(['manager','certified_specialist'])
def launch_the_rocket():

return {"hello":"world"}, 200

In the above example, only a token that has both a manager and certified_specialist role assigned to it will be able to
access the endpoint.

3.4 Require Admin

require_admin is a convenience decorator for requiring a token to have the admin role assigned to it. This is the
equivalent of:

@require_all_of_these_roles(['admin'])

Example

from lowball import Lowball, require_admin
...
@app.route("/reboot", methods=["POST"])
@require_admin
def reboot_the_system():

return {...}, 200

8 Chapter 3. Route RBAC Enforcement

CHAPTER

FOUR

INCLUDED ROUTES

GET /builtins/status
get basic status information about authentication provider state of the service

Example request:

GET /builtins/status HTTP/1.1
Host: example.com

Status Codes

• 200 OK – reports status of service including name and whether there is an enabled auth
provider

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"name": "string",
"auth_provider_initialized": true,
"auth_db_initialized": true

}

POST /builtins/auth
obtain a token (login)

Example request:

POST /builtins/auth HTTP/1.1
Host: example.com
Content-Type: application/json

{}

Status Codes

• 200 OK – successful login

Example response:

9

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

lowball, Release 1.0

HTTP/1.1 200 OK
Content-Type: application/json

{
"token": "string",
"token_data": {

"cid": "string",
"r": [

"string"
],
"cts": "string",
"ets": "string",
"rcid": "string",
"tid": "string"

}
}

GET /builtins/auth
get information about current authenticated token

Example request:

GET /builtins/auth HTTP/1.1
Host: example.com

Status Codes

• 200 OK – successfully return of token data

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"cid": "string",
"r": [

"string"
],
"cts": "string",
"ets": "string",
"rcid": "string",
"tid": "string"

}

DELETE /builtins/auth
revoke current authenticated token (logout)

Status Codes

• 204 No Content – successfully revoked current token

GET /builtins/auth/tokens
get listing of all tokens for current authenticated client

Query Parameters

10 Chapter 4. Included Routes

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5

lowball, Release 1.0

• roles (array) –

• exclude_expired (boolean) –

Example request:

GET /builtins/auth/tokens HTTP/1.1
Host: example.com

Status Codes

• 200 OK – tokens returned successfully

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"cid": "string",
"r": [

"string"
],
"cts": "string",
"ets": "string",
"rcid": "string",
"tid": "string"

}
]

POST /builtins/auth/tokens
create a token for the current authenticated client or target client

Example request:

POST /builtins/auth/tokens HTTP/1.1
Host: example.com
Content-Type: application/json

{
"client_id": "string",
"roles": [

"string"
],
"token_life": 1

}

Status Codes

• 201 Created – token created

Example response:

HTTP/1.1 201 Created
Content-Type: application/json

(continues on next page)

11

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2

lowball, Release 1.0

(continued from previous page)

{
"cid": "string",
"r": [

"string"
],
"cts": "string",
"ets": "string",
"rcid": "string",
"tid": "string"

}

DELETE /builtins/auth/tokens
revoke tokens for the current authenticated clients

Status Codes

• 204 No Content – tokens removed successfully

GET /builtins/auth/tokens/all
get tokens for all clients in auth database

Query Parameters

• roles (array) –

• exclude_expired (boolean) –

• client_ids (array) –

Example request:

GET /builtins/auth/tokens/all HTTP/1.1
Host: example.com

Status Codes

• 200 OK – tokens returned successfully

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"cid": "string",
"r": [

"string"
],
"cts": "string",
"ets": "string",
"rcid": "string",
"tid": "string"

}
]

12 Chapter 4. Included Routes

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

lowball, Release 1.0

DELETE /builtins/auth/tokens/all
delete tokens for all clients in auth database

Status Codes

• 204 No Content – tokens deleted successfully

POST /builtins/auth/tokens/cleanup
initiate cleanup operation for expired tokens

Status Codes

• 204 No Content – the cleanup operation was initiated

GET /builtins/auth/tokens/{token_id}
get information on a specific token by token_id

Parameters

• token_id (string) –

Example request:

GET /builtins/auth/tokens/{token_id} HTTP/1.1
Host: example.com

Status Codes

• 200 OK – successfully return of token data

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"cid": "string",
"r": [

"string"
],
"cts": "string",
"ets": "string",
"rcid": "string",
"tid": "string"

}

DELETE /builtins/auth/tokens/{token_id}
revoke a token by token id

Parameters

• token_id (string) –

Status Codes

• 204 No Content – token deleted successfully

GET /builtins/auth/clients
get authenticated client information from auth provider

Example request:

13

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5

lowball, Release 1.0

GET /builtins/auth/clients HTTP/1.1
Host: example.com

Status Codes

• 200 OK – the client data is returned successfully

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"client_id": "string",
"roles": [

"string"
]

}

POST /builtins/auth/clients
authenticated client update own information in auth provider

Example request:

POST /builtins/auth/clients HTTP/1.1
Host: example.com
Content-Type: application/json

{}

Status Codes

• 200 OK – the client was updated successfully

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"client_id": "string",
"roles": [

"string"
]

}

POST /builtins/auth/clients/create
create a client in the auth provider

Example request:

POST /builtins/auth/clients/create HTTP/1.1
Host: example.com
Content-Type: application/json

(continues on next page)

14 Chapter 4. Included Routes

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

lowball, Release 1.0

(continued from previous page)

{}

Status Codes

• 201 Created – the client was created successfully

Example response:

HTTP/1.1 201 Created
Content-Type: application/json

{
"client_id": "string",
"roles": [

"string"
]

}

POST /builtins/auth/clients/register
allow a client to register itself in the auth provider

Example request:

POST /builtins/auth/clients/register HTTP/1.1
Host: example.com
Content-Type: application/json

{}

Status Codes

• 201 Created – the client was created successfully

Example response:

HTTP/1.1 201 Created
Content-Type: application/json

{
"client_id": "string",
"roles": [

"string"
]

}

GET /builtins/auth/clients/all
return list of all clients in the auth provider

Query Parameters

• roles (array) –

Example request:

15

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2

lowball, Release 1.0

GET /builtins/auth/clients/all HTTP/1.1
Host: example.com

Status Codes

• 200 OK – the clients were returned successfully

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"client_id": "string",
"roles": [

"string"
]

}
]

GET /builtins/auth/clients/{client_id}
get auth provider information for a specific client

Parameters

• client_id (string) –

Example request:

GET /builtins/auth/clients/{client_id} HTTP/1.1
Host: example.com

Status Codes

• 200 OK – the client data was returned

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"client_id": "string",
"roles": [

"string"
]

}

POST /builtins/auth/clients/{client_id}
change auth provider information for the client

Parameters

• client_id (string) –

Example request:

16 Chapter 4. Included Routes

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

lowball, Release 1.0

POST /builtins/auth/clients/{client_id} HTTP/1.1
Host: example.com
Content-Type: application/json

{}

Status Codes

• 200 OK – the client data was returned

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"client_id": "string",
"roles": [

"string"
]

}

DELETE /builtins/auth/clients/{client_id}
delete the client from the auth provider

Parameters

• client_id (string) –

Status Codes

• 204 No Content – the client was deleted

DELETE /builtins/auth/clients/{client_id}/roles
remove all roles from a the client

Parameters

• client_id (string) –

Status Codes

• 204 No Content – all roles removed

POST /builtins/auth/clients/{client_id}/roles/{role}
add a specific role to the client

Parameters

• client_id (string) –

• role (string) –

Status Codes

• 204 No Content – the role was added

DELETE /builtins/auth/clients/{client_id}/roles/{role}
remove a specific role from the client

Parameters

• client_id (string) –

17

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5

lowball, Release 1.0

• role (string) –

Status Codes

• 204 No Content – the role was removed

POST /builtins/auth/clients/{client_id}/enable
enable the client in the auth provider

Parameters

• client_id (string) –

• role (string) –

Status Codes

• 204 No Content – the client was enabled

POST /builtins/auth/clients/{client_id}/disable
disable the client in the auth provider

Parameters

• client_id (string) –

• role (string) –

Status Codes

• 204 No Content – the client was disabled

18 Chapter 4. Included Routes

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5

CHAPTER

FIVE

AUTHENTICATION PROVIDERS

Lowball Authentication Providers are the interface for your application(s) to the Identity Provider of your choice.

Currently, lowball only supports one Authentication Provider at a time for an application.

5.1 Available Authentication Providers

The following are known existing lowball Authentication Providers. If you have written one and would like it included,
please submit a PR or contact us to have it added!

Table 1: Available Authentication Providers
Builtin Basic Authentication
Provider

Builtin Provider to the lowball library useful in a development environment.

lowball-ldap-authprovider Utilize your existing LDAP / Active Directory system as your Authentication
Provider.

5.1.1 Builtin Basic Authentication Provider

The builtin Authentication Provider is meant to be minimal, have no external dependencies and help a developer get
up and running quickly. It could be used in a small production environment that has limited authentication needs.

It provides a username and password setup with a single admin user. The authentication mechanism for this class simply
checks if the username and password of the provided AuthPackage matches the configured username and password. If
they do, then an AuthData object is returned with the provided username and given the role of admin.

Configuration

No configuration is required for this Authentication Provider but uses two optional items.

username username of the user to be created. Defaults to admin.

password password of the user to be created. Defaults to nimda.

Example Config

auth_provider:
username: admin
password: myComplexPassword

19

https://en.wikipedia.org/wiki/Identity_provider
https://github.com/EmersonElectricCo/lowball-ldap-authprovider

lowball, Release 1.0

Example Authentication Request

curl -i -X POST -H "Content-Type: application/json" http://localhost:5000/builtins/auth -
→˓-data "{\"username\": \"admin\", \"password\": \"nimda\"}"

5.2 Implementing Your Own Authentication Provider

Lowball allows you to define your own Authentication Provider and use that Identity Provider in your applications /
ecosystem. Let’s walk through the process of how to implement one.

Implementing an Authentication Provider starts off by implementing the subclass of AuthProvider

from lowball.models.provider_models.auth_provider import AuthProvider

class MyCustomAuthProvider(AuthProvider):
def __init__(self, **kwargs):

super(MyCustomAuthProvider, self).__init__(**kwargs)
...

You can pass anything you want into the __init__ of either class. The top level class is yours to define however you
want, and the base class __init__ doesn’t set any attributes or run any methods.

5.2.1 Required Methods

A valid implementation of AuthProvider must implement the following methods:

authenticate This is the method that will be used to authenticate by accepting an AuthPackage. How this occurs is
dependent on the implementation and requirements of the authentication Identity Provider, but this method must
return an instance of ClientData

auth_package_class This is an abstract property that is intended to define the type of authentication package that
authenticate accepts. This should return the class signature of your implementation, not an actual instance of the
class. For more information see AuthPackage

5.2.2 Optional Methods

The following methods are optional for implementation by the developer. For clarity, any of these implementations
would be managing the chosen Identity Provider from lowball.

initialized This is used by lowball to determine if the provider is ready to provide authentication services for the
application. It is a @property of the class and should be designed as such. By default, this returns True.

create_client_package_class This is an abstract property that is intended to define the type of data need to create a
user by an admin. This should return the class signature of your implementation, not an actual instance of the
class. For more information see CreateClientPackage

client_registration_package_class This is an abstract property that is intended to define the type of data needed for a
user to self-register. This should return the class signature of your implementation, not an actual instance of the
class. For more information see ClientRegistrationPackage

update_client_package_class This is an abstract property that is intended to define the type of data updating a user as
an admin. This should return the class signature of your implementation, not an actual instance of the class. For
more information see SelfUpdateClientPackage

20 Chapter 5. Authentication Providers

lowball, Release 1.0

self_update_client_package_class This is an abstract property that is intended to define the type of data updating a
user as a user accepts. This should return the class signature of your implementation, not an actual instance of
the class. For more information see SelfUpdateClientPackage

create_client Method that can be used to create a client in the Identity Provider. Accepts a CreateClientPackage.

client_self_register Method that can be used to self-register a client in the Identity Provider. Accepts a ClientRegis-
trationPackage.

enable_client Used to activate a client in the Identity Provider. It has no requirements on return.

disable_client Used to deactivate a client in the Identity Provider. It has no requirements on return.

delete_client Used to remove a client from the Identity Provider. It has no requirements for its return.

add_roles Used to add a list of roles / group-like attributes to a specific client in the Identity Provider. It takes a
client_id and a list of the roles to assign. It has no requirements for its return value.

delete_roles Used to remove roles / group-like attributes from a specific client in the Identity Provider. It takes a
client_id and a list of the roles to remove. It has no requirements for its return value.

update_client Used by an admin to update attributes of an existing client registered in the Identity Provider. It takes a
client_id and any arguments needed to update the client properly. It should return a ClientData Object

client_self_update Identical to update_client, but a separate interface was established to allow for a distinction between
an admin updating a client and a client updating themself in the system.

list_clients Used to list all the clients who are registered in the system. The return value from this method must be a
list of ClientData Objects.

get_client Get details on the specified client_id provided. It must return an instance of a ClientData Object or Client-
Data subclass representing the requested client_id and associated roles. This method must be implemented to
enable non admin clients to create their own tokens without going through the typical login process, in addition
to any features involved with accessing client information.

5.2.3 ClientData Object

For methods that are supposed to return a ClientData object, it is best practice, and in many cases required that the
result be in the form of a ClientData object, either as the base class or a subclass.

The base class takes two arguments to become initialized:

client_id a string representing the identifier for this user. This argument is required.

roles: a list of roles the user has in the system. This must be a list of strings, and is required.

The class also has a method, to_dict which will return a dictionary representation of the ClientData object. For the
base class, this is something like this:

{
"client_id": "client",
"roles": ["role1", "role2", "role3"]

}

Custom Client Objects

If you want to extend the functionality of the ClientData class, simply subclass it in your custom object. This custom
class will still need client_id and roles passed in at __init__ to instantiate, but you may add other arguments if you
should choose to do so.

It is recommended that if you do implement new attributes for your custom class that you modify the to_dict method
in this manner:

5.2. Implementing Your Own Authentication Provider 21

lowball, Release 1.0

def to_dict(self):
base_dict = super(CustomUser, self).to_dict()
base_dict.update({

this is where you add your
custom attributes

})
return base_dict

5.2.4 AuthPackage

AuthPackage is an abstract class that is to be implemented by the Authentication Provider. This class is used to define
what data the Authentication Provider expects to be given when a client initially authenticates and requests a token.

The top level objects from the POST request to the /builtin/auth endpoint will be directly mapped to AuthPackage class
__init__.

For example if the AuthProvider expects a username and password then the implementation of the AuthPackage would
look something like this:

from lowball.models.provider_models.auth_provider import AuthPackage

class MyAuthPackage(AuthPackage):

def __init__(self, username, password, **kwargs):
super(DefaultAuthPackage, self).__init__(**kwargs)

The request body sent to /builtin/auth would need to come in the following form

{
"username": "the_user",
"password": "MySuperComplexPassword"

}

This would then be mapped to an instance of MyAuthPackage and given to the Authentication Provider’s authenticate
method.

5.2.5 CreateClientPackage

CreateClientPackage is an optional abstract class that is to be implemented by the Authentication Provider. This class
is used to define what data the Authentication Provider expects to be given when an admin is creating a user in the
Authentication Provider.

The top level objects from the POST request to the /builtin/auth/create endpoint will be directly mapped to Create-
ClientPackage class __init__.

22 Chapter 5. Authentication Providers

lowball, Release 1.0

5.2.6 ClientRegistrationPackage

ClientRegistrationPackage is an optional abstract class that is to be implemented by the Authentication Provider. This
class is used to define what data the Authentication Provider expects to be given when a user is self-registering with
the Authentication Provider.

The top level objects from the POST request to the /builtin/auth/register endpoint will be directly mapped to Clien-
tRegistrationPackage class __init__.

5.2.7 UpdateClientPackage

UpdateClientPackage is an optional abstract class that is to be implemented by the Authentication Provider. This class
is used to define what data the Authentication Provider expects to be given when an admin is updating attributes of a
client in the Authentication Provider.

The top level objects from the POST request to the /builtin/auth/clients/<client_id> endpoint will be directly mapped
to UpdateClientPackage class __init__.

5.2.8 SelfUpdateClientPackage

SelfUpdateClientPackage is an optional abstract class that is to be implemented by the Authentication Provider. This
class is used to define what data the Authentication Provider expects to be given when the client is updating attributes
of themselves in the Authentication Provider.

The top level objects from the POST request to the /builtin/auth/clients endpoint will be directly mapped to SelfUp-
dateClientPackage class __init__.

5.2.9 Using Your Custom Authentication Provider

Once you have created your custom Authentication Provider class, you can use it in your lowball application by passing
the class signature to the auth_provider argument of the __init__ of the lowball application:

app = Lowball(config=conf, auth_provider=MyCustomAuthProvider)

Do not pass an instance of the class at __init__. This will fail as lowball is responsible for initializing the class and
will map the object the configuration options from the auth_provider section of the to the __init__ of the custom
Authentication Provider class.

For example, if your custom auth provider takes three arguments on __init__ such as client_id, password, and hostname,
then the auth_provider section of your config should look something like this:

auth_provider:
client_id: user
password: keepitsecretkeepitsafe
hostname: host.domain.com

These values will be mapped automatically into the __init___ of your custom class when you instantiate your lowball
application.

5.2. Implementing Your Own Authentication Provider 23

lowball, Release 1.0

24 Chapter 5. Authentication Providers

CHAPTER

SIX

AUTHENTICATION DATABASES

Lowball leverages the concept of an Authentication Database to manage the authentication tokens issued by your appli-
cation(s). The Authentication Database interface serves as a simple template for interacting with the storage mechanism
of your choice e.g. local storage, a traditional database, in memory storage, etc.

The Auth Database does *DOES NOT* store the actual tokens. Rather, it tracks valid tokens and their metadata.

Currently, lowball only supports one Authentication Database at a time for an application.

6.1 Available Authentication Databases

The following are known-existing lowball Authentication Databases. If you have written one and would like it included,
please submit a PR or contact us to have it added!

Table 1: Available Authentication Databases
Builtin Basic Authentication
Database

Builtin Auth Database to the lowball library for use in your development en-
vironment.

lowball-arango-authdb Utilize an ArangoDB as your Authentication Database backend

6.1.1 Builtin Basic Authentication Database

The builtin Authentication Database makes use of file-system storage for tokens. It is meant to be minimal, have
no external dependencies and help a developer get up and running quickly. It could be used in a small production
environment that has limited authentication needs.

Configuration

No configuration is required for this Authentication Database but it has one optional item.

token_path This is the path on disk where the token data will be stored. It defaults to
/var/lib/lowball/authentication/tokens

Example Config

token_path: "/app/authentication/tokens"

25

https://github.com/EmersonElectricCo/lowball-arango-authdb
https://arangodb.com

lowball, Release 1.0

6.2 Implementing Your Own Authentication Database

Lowball allows you to define your own Authentication Database to use in your ecosystem. Let’s walk through the
process of how to implement one.

Implementing an Authentication Database starts off by implementing the subclass of AuthDatabase.

from lowball.models.provider_models.auth_db import AuthDatabase

class CustomAuthDatabase(AuthDatabase):
def __init__(self, **kwargs):

super(CustomAuthDatabase, self).__init__(**kwargs)
...

You can pass anything you want into the __init__ of either class. The top level class is yours to define however you
want, and the base class __init__ doesn’t set any attributes or run any methods.

6.2.1 Required Methods

A valid implementation of AuthDatabase *must* implement the following methods:

add_token Used to add a valid token to the Authentication Database. It takes one argument: token_object, which
must be a Token object.

lookup_token Used to lookup a single token in the database using a token_id. It should return a Token object.

revoke_token Used to revoke / delete the token with the supplied token_id from the database.

list_tokens Used to return a list of all the tokens in the database. Each item in the returned list should be a Token
object.

list_tokens_by_client_id Used to look up all tokens associated with a given user. Takes single argument, client_id.
The output should be a list of Token objects.

list_tokens_by_role Similar to list_tokens_by_client_id; the returned tokens should be all tokens associated with the
requested role. Takes single argument role. The output should be a list of Token objects.

cleanup_tokens Is meant to remove all expired tokens from the database.

revoke_all Deletes all tokens from the database

6.2.2 Token Objects

Authentication is carried out in lowball through the use of JSON Web Tokens (JWT). The object representation of these
inside of lowball are Token objects. These objects are meant to be the return values of several class methods in the
codebase that create, update, etc. tokens in the application.

These tokens *do not* actually store the signed JWT, but rather house the data that is encoded in the JWT. These objects
take a number of arguments to be initialized (all of which are required):

cid A string representing the client that the token is assigned to.

r A list of roles that this token is authorized for. These roles must all be strings.

cts A datetime string representing when the token was created. The format for the datetime string is %Y-%m-%d
%H:%M:%S.

26 Chapter 6. Authentication Databases

lowball, Release 1.0

ets A datetime string representing when the token will not longer be a valid token for authentication. The format for
the datetime string is %Y-%m-%d %H:%M:%S.

rcid A string representing the client who requested the particular token.

tid A UUID of the token that is used to identify it in the application. The [a-zA-Z0-9]{16}

Token objects have the method, to_dict that is used to return a dictionary representation of the Token object. When
called, it will return something like this:

{
"cid": "user",
"r": ["role1", "role2", "role3"],
"cts": "2020-01-01 00:00:00.0000",
"ets": "2020-02-01 00:00:00.0000",
"rcid": "issuing_user",
"tid": "7d760e6d-185a-41f1-b9de-8b87033c5435"

}

6.2.3 Using Your Custom Authentication Database

app = Lowball(config=conf, auth_database=CustomAuthDatabase)

Do not pass an instance of the class at __init__. This will fail because the lowball __init__ will map the object from
the auth_db section of the to the __init__ of the custom class.

For example, if your custom Authentication Database takes three arguments on __init__ such as username, password,
and database_collection, then the auth_db section of your config should look something like this:

auth_db:
username: user
password: keepitsecretkeepitsafe
database_collection: tokens

These values will be mapped automatically into the __init__ of your custom class when you instantiate your lowball
application.

6.2. Implementing Your Own Authentication Database 27

lowball, Release 1.0

28 Chapter 6. Authentication Databases

CHAPTER

SEVEN

CONFIGS

Lowball configs come in the form of a YAML or JSON file. There are six recognized top-level configuration sections.
Each section can contain the configuration object for that section or they can point to a json/yaml file containing the
configuration data for that section

meta Metadata about the application such as description, tags, etc.

authentication Configs used for the governance of tokens such as max lifetime of a token.

application Configurations used by the service itself.

auth_provider All data surrounding the chosen Authentication Provider.

auth_db All data surrounding the chosen Authentication Database.

logging All data surrounding the chosen log provider and format.

All configuration values native to lowball have default values and thus have no requirements.

Upon initialization, all configuration values are mapped to the app class variable lowball_config, which means that it
can be accessed in the following manner:

In the Application Itself

self.lowball_config

In a View Function

from flask import current_app

@app.route("/", methods=["GET"])
def view_func():

app_config = current_app.lowball_config

7.1 Meta Config

The meta config section is used to define attributes that describe the application. The primary purpose of this data is
exposing it on the /builtin/status endpoint. However, like all config items it is made available for use anywhere in the
application. There is one reserved field used by the operation of the application and four reserved fields used by the
status route.

base_route If provided will be prepended to every route. For example if your have localhost:5000/hello and then define
a base route of /app then the full url in operation would be localhost:5000/app/hello. This functionality can be
useful when running the services behind an API Gateway, ingress controller, etc.

29

lowball, Release 1.0

name Simple name of the application.

description Simple description of your application.

tags Used to label / tag your application instance.

Meta Example

meta:
name: THE_APP
base_route: /app
description: "my super awesome application"
tags:
- experimental
- awesome

7.2 Authentication Config

The authentication config used for the governance of tokens in the system. There are three available settings:

token_secret The token secret is the string used to encrypt / decrypt the JWTs (tokens). It is highly encouraged to set
this to a secure string of your choosing for anything other than local development. If it is not specified in the
config, it will default to CHANGE_ME.

default_token_life Specifies the lifetime (in seconds) that a generated token is to be valid, if it is not specified by the
requester. If a configuration value is not supplied, it will default to 3600 (1 hour).

max_token_life Specifies the maximum lifetime (in seconds) that can be granted to a token. If a configuration value
is not specified it will default to 2592000 (~30 days).

authentication:
default_token_life: 3600
max_token_life: 7200
token_secret: "supersecrettokensecret"

7.3 Application Config

The application config is the place where configs that are specific to the application are meant to be stored. This could
be anything from URLs for external APIs that the service is meant to make requests to, to usernames for databases that
the service pulls data from. Given the nature of this type of data, there is no enforcement on the data that is contained
in this section of the config. All that is necessary is that it be in an object format in the config, so that it can be read in
as a python dict object.

30 Chapter 7. Configs

lowball, Release 1.0

7.4 Authentication Provider Config

Configuration values associated with the chosen Authentication Provider. These values are defined by the implemen-
tation of the given provider. See Available Authentication Providers for further documentation.

7.5 Auth Database Config

Configuration values associated with the chosen Authentication Database. These values defined by the implementation
of the given database. See Available Authentication Databases for further documentation.

7.6 Logging Config

Configuration values associated with the chosen Logging Provider. See Logging for further documentation.

7.7 Reading in Configs

The configs that lowball uses can be read in using two methods: 1. Directly from a python dict using the con-
fig_from_object builtin method 2. From a JSON or YAML file using the config_from_file builtin method

From an object

from lowball import config_from_object

config = {
"meta": {
"name": "APP",
"base_route": "/app",
"description": "example to show config reading methods"

},
"authentication": {
"max_token_life": 7200,
"default_token_life": 3600,
"token_secret": "supersecrettokensecret"

},
"application": {
"username": "user_of_import"

},
"auth_provider": {
...

},
"auth_db": {
...

},
"logging": {
...

}
}

config_object = config_from_object(config)

7.4. Authentication Provider Config 31

lowball, Release 1.0

From a JSON File

config.json could look something like this:

{
"meta": {
"name": "APP",
"base_route": "/app",
"description": "example to show config reading methods"

},
"authentication": {
"max_token_life": 7200,
"default_token_life": 3600,
"token_secret": "supersecrettokensecret"

},
"application": {
"username": "user_of_import"

},
"auth_provider": {

},
"auth_db": {

},
"logging": {

}
}

We would read it in like this:

from lowball import config_from_file

config_object = config_from_file("./config.json")

From a YAML File

config.yaml could look something like this:

meta:
name: APP
base_route: /app
description: "description of application goes here"

authentication:
default_token_life: 3600
max_token_life: 7200
token_secret: "supersecrettokensecret"

application:
username: user_of_import

auth_provider:
...

auth_db:
...

logging:
...

32 Chapter 7. Configs

lowball, Release 1.0

or this if using sub files:

meta: /path/to/meta.yaml
authentication:
default_token_life: 3600
max_token_life: 7200
token_secret: "supersecrettokensecret"

application: /path/to/app.yaml
auth_provider:
...

auth_db:
...

logging:
...

We would read it in like this:

from lowball import config_from_file

config_object = config_from_file("./config.yaml")

7.7. Reading in Configs 33

lowball, Release 1.0

34 Chapter 7. Configs

CHAPTER

EIGHT

LOGGING

Lowball allows you to use any python supported logging handler and formatter. The only lowball specific consideration
is if your chosen logger requires any config.

Like the Authentication Providers and Databases, any config variables needed by your logger will be mapped by the
config directly to the corresponding __init__ arguments. A simple example of this is below.

Given the following handler

from logging.handlers import SocketHandler

class CustomLogHandler(SocketHandler):
def __init__(self, host, port, **kwargs):

super(CustomLogHandler, self).__init__(host, port)
...

The logging section of our config might look like:

logging:
host: 127.0.0.1
port: 4500

8.1 Default Logging Handler

The default logging handler in lowball is a RotatingFileHandler that outputs the logs in JSON format.

The all optional available configuration values are:

filename File that the logger will write to. By default, this is ./lowball.log.

formatter A dictionary that is used to instantiate the formatter for the log handler.

log_level The minimum level of log that is to be recorded by the logger. These follow the python standards.

max_bytes A value that defines the maximum number of bytes that can be written to the log file before it is rolled over
or overwritten. This value defaults to 2^20 bytes, or 1mb, and must be a number greater than 0.

backup_count Defines the number of rolled-over log files that are kept by the logging handler. This value defaults to
5 and must be a number greater than 0.

Example Logging Config

35

https://docs.python.org/3/library/logging.html#logging.Handler
https://docs.python.org/3/library/logging.html#formatter-objects

lowball, Release 1.0

logging:
filename: /var/log/app/app.log
formatter:
date_format: "%Y-%m-%d %H:%M:%S.%fUTC"

log_level: DEBUG
max_bytes: 1048576
backup_count: 5

Example Non-Verbose Log

{
"name": "myApp",
"msg": {
"result": "401 UNAUTHORIZED",
"error_information": null

},
"args": [],
"additional": {
"user_agent": "curl/7.68.0",
"src_ip": "127.0.0.1",
"http_method": "POST",
"url": "/launch",
"status_code": 401,
"user_data": {
"requesting_user": "jeff",
"client_token_id": "0347303c-ffc9-46ea-bded-22e3258dd3b2",

}
},
"timestamp": "2021-02-09 15:36:05.062443UTC",
"level": "ERROR",
"requesting_user": "jeff",
"client_token_id": "0347303c-ffc9-46ea-bded-22e3258dd3b2",
"request_id": "70047f54-d296-4a57-b7cd-b087fa72f269"

}

Example Verbose Log

{
"name": "myApp",
"msg": {
"result": "401 UNAUTHORIZED",
"error_information": null

},
"args": [],
"pathname": "/path/to/calling/file/request_finished_log.py",
"filename": "request_finished_log.py",
"module": "request_finished_log",
"exc_info": null,
"stack_info": null,
"thread": 140111293720320,
"process": 54683,
"additional": {
"user_agent": "curl/7.68.0",

(continues on next page)

36 Chapter 8. Logging

lowball, Release 1.0

(continued from previous page)

"src_ip": "127.0.0.1",
"http_method": "POST",
"url": "/launch",
"status_code": 401,
"user_data": {
"requesting_client": "jeff",
"client_token_id": "0347303c-ffc9-46ea-bded-22e3258dd3b2",

}
},
"timestamp": "2021-02-09 15:36:05.062443UTC",
"func_name": "request_finished_log",
"line_number": 45,
"level": "ERROR",
"process_name": "MainProcess",
"thread_name": "Thread-3",
"requesting_client": "jeff",
"client_token_id": "0347303c-ffc9-46ea-bded-22e3258dd3b2",
"request_id": "70047f54-d296-4a57-b7cd-b087fa72f269"

}

8.1. Default Logging Handler 37

lowball, Release 1.0

38 Chapter 8. Logging

HTTP ROUTING TABLE

/builtins
GET /builtins/auth, 10
GET /builtins/auth/clients, 13
GET /builtins/auth/clients/all, 15
GET /builtins/auth/clients/{client_id}, 16
GET /builtins/auth/tokens, 10
GET /builtins/auth/tokens/all, 12
GET /builtins/auth/tokens/{token_id}, 13
GET /builtins/status, 9
POST /builtins/auth, 9
POST /builtins/auth/clients, 14
POST /builtins/auth/clients/create, 14
POST /builtins/auth/clients/register, 15
POST /builtins/auth/clients/{client_id}, 16
POST /builtins/auth/clients/{client_id}/disable,

18
POST /builtins/auth/clients/{client_id}/enable,

18
POST /builtins/auth/clients/{client_id}/roles/{role},

17
POST /builtins/auth/tokens, 11
POST /builtins/auth/tokens/cleanup, 13
DELETE /builtins/auth, 10
DELETE /builtins/auth/clients/{client_id}, 17
DELETE /builtins/auth/clients/{client_id}/roles,

17
DELETE /builtins/auth/clients/{client_id}/roles/{role},

17
DELETE /builtins/auth/tokens, 12
DELETE /builtins/auth/tokens/all, 12
DELETE /builtins/auth/tokens/{token_id}, 13

39

	Installing lowball
	Pip
	From Source

	Quickstart
	Before You Begin
	Basic lowball App

	Route RBAC Enforcement
	Require Authenticated User
	Require Any of These Roles
	Require All of These Roles
	Require Admin

	Included Routes
	Authentication Providers
	Available Authentication Providers
	Builtin Basic Authentication Provider
	Configuration
	Example Authentication Request

	Implementing Your Own Authentication Provider
	Required Methods
	Optional Methods
	ClientData Object
	AuthPackage
	CreateClientPackage
	ClientRegistrationPackage
	UpdateClientPackage
	SelfUpdateClientPackage
	Using Your Custom Authentication Provider

	Authentication Databases
	Available Authentication Databases
	Builtin Basic Authentication Database
	Configuration

	Implementing Your Own Authentication Database
	Required Methods
	Token Objects
	Using Your Custom Authentication Database

	Configs
	Meta Config
	Authentication Config
	Application Config
	Authentication Provider Config
	Auth Database Config
	Logging Config
	Reading in Configs

	Logging
	Default Logging Handler

	HTTP Routing Table

